
Post-software engineering
Challenges for the 21st century

Jakub Šebek, 2022 (1st public draft)

Hey, Alexa! Would you write me a short rsync script?
— Do you have time to teach me? (1)

The computer of the future is different from the computer of 2022. Perhaps not so much on
the hardware side, but in its software — greatly. It doesn't stand in one's way, it doesn't
hinder the user, and it doesn't act unexpectedly. Promises as old as time remain unfulfilled
and society is left crippled. At a point ever more critical, we have to take a few — or a few
more — steps back, think very carefully, and continue in the direction of Human-Machine
symbiosis that we really want.

Post–software engineering Challenges for the 21st century

Note: It is to appear obvious the author concerns himself merely with the near, foreseeable
future, roughly corresponding to his expected lifetime — the 21st century. Or similarly,
until the term "computer" loses all meaning as the natural course of advancement renders
this concept itself ridiculous.

Prologue

The first scenario suggests a future where man stays relatively dominant in his relationship
with the computer. In this case, the computer's physical form doesn't undergo a drastic
change — we have a keyboard, a mouse and a screen — or components strongly
reminiscent thereof. However, the assistance received is indispensable, and the interface is
perfectly ergonomic and fault-free. The user hardly even thinks about the existence of the
computer, being completely immersed and undisturbed in whatever pursuit their curiosity,
boredom or job needs them.

The computer of the future in the second stage loses the well-known peripherals — all that
is left is the fundamental screen with an audio input/output interface or, if the user require
silence, a stenotype of sorts. A direct brain-link interface is also not unthinkable anymore.
The commonality of these input methods is that they mediate the communication in
natural language (or any form of communication that is the most comfortable to the
human — we assume this to remain natural language for Homo Sapiens in the time span
we are considering).

Ultimately, the computer poses no barrier to the user whose thinking capacity becomes
virtually unlimited. The computer continuously learns to adjust to its master — to
understand him better and to serve him better. At the same time, the master develops an
attachment to the computer. Inevitably, the computer becomes, at least on its outside, a
person — for no one can understand and comfort a person better than another person.

Ordinary people will be left with a lot of time to anthropomorphize and question these
robots, but engineers must not sleep, as their train is headed into a rather different future
— and it doesn’t take stops.

Post–software engineering Challenges for the 21st century

Regardless of whether these are two separate stages, two timelines, or parts of a mix, they
underline several common goals that the field will have to overcome before they can
materialise. We hitherto observe these Achilles’ heels of software engineering:

1. Reliability and stability
By far the most sought after feature of a computer as of today — for it to "work". In fact,
the ongoing incompetence has gone so far that it doesn't strike anyone as remotely odd
nowadays when a computer doesn't do what it is expected to. People have fully
accustomed themselves to the fact that "Computers don't work". There are few feelings
more dreading than trying to complete a task and finding our previous approach
dysfunctional — that likely because of the mistake of some human. The damage caused
every day as a result of software error is unquantifiable.

2. Security
Just looking at the heaps of information that the computer infrastructure accommodates,
all the vital aspects of our lives it controls and the amount of harm at stake must entice us
to place security of computers as a top priority. Similarly to computers not functioning
properly, people are getting used to systems getting circumvented, accounts getting
"hacked" and networks "infected". The response to such announcements I never hear is
"How is that even possible?", and acceptance of reality is not the reason for that. With the
protected property being fully digital, we finally have everything necessary to mitigate such
offences completely, yet we are still failing.

3. Automation
The majority of end-user software developed today is still poorly equipped with
automation interfaces that would allow the human to, one day, decide: "Would you do this
for me?". Many automation solutions and frameworks exist, but they are limited to
domains — the automation of user software requires industry-wide attention. One is for
certain — more and more work is going to be carried out automatically, by robots. In
order for the transition to take place as smoothly as possible, we shall prepare the
appropriate software infrastructure for the future — and sit back for the Great Handover.
It is one of the last inventions we'll have to make, after all.

The remainder of the work is dedicated entirely to these three questions. In a manner of
gradual exploration, the author attempts to prove the paper’s core thesis: Not only does
the industry converge in issues, but their solutions converge in philosophy —
one idea, one vision, and one radical paradigm shift.

Post–software engineering Challenges for the 21st century

Part One: How did we get here?
In the beginning, there was lambda; then,
Church said: “Let there be computation!” —
and there was computation.

he computer is first conceptualised by
mathematicians — men of utmost

elegance, purity, and aversion against the
slightest of imperfections. The tape, the
combinator, the state graph — is whence
the machine comes by its soul.1

T

Computer science is born

Like explorers of new worlds, computer
scientists are the biologists and zoologists in
the wonderful archipelago of computation
unveiled to us by mathematics. They
became the half-step between
mathematicians and engineers — they took
the abstract machines, they disassembled
them, and carefully studied their behaviour.
They even programmed some of the first
computers, but their overly methodical
approach would soon discourage anyone
who wanted to make any money off of the
new miracle.

Software engineering is born

One truly must not mistakenly downplay
the contribution of computer science to his
life with a computer. Every action one
takes in his work — each mouse stroke,
every key press — as soon as these step
from the physical to the digital ether,
thousands of computer science papers

1 As we’ll see, pure mathematics remains a major
source of fuel for the field.

sparkle at every stop and turn taken before
pixels appear on the screen.

However, scientists are strictly never the
cohort that brings innovation to the general
public — We have engineers for that.
Naturally so, software engineers storm the
world to turn academic papers into reality.

The software engineer
It didn’t take long for governments,
universities and companies to start adopting
computers. Responsible for this boom were
the first software engineers; despite the
ever-growing requirements put on them and
the tight limits of contemporary hardware,
they never failed to deliver — They laid
foundations for the silicon age by creating
the first programming languages, operating
systems and development practices.

These engineers of the early computing era
were also the first humans to see their
program misbehave — they found the first
bugs and crashes, and they were the first to
hold their heads in eternal dread of their
coding errors. They faced unprecedented
problems and pioneered solutions. Their
actions were affected by many factors, such
as the economy (their bosses), their peers,
but primarily, their human nature. A
distinct culture vividly emerged — the same
culture that would, decades later, bring
their entire discipline to a close.

Post–software engineering Challenges for the 21st century

Demigods
Mechanical engineers are held back by the
laws of physics, astronomers cannot fight
the movement of celestial bodies, and
doctors subordinate themselves to the might
of biology. One thing that computers
allowed their creators to do than ever before
was prototyping new ideas and solutions on
a whim — making only their imaginations
the limit. If architects could modify
material properties, astronomers change
orbital trajectories and doctors design the
body (we’re getting there!), great
responsibility would lie upon them — the
same one we gave to software engineers.

They turned the big cumbersome
calculators into something pleasant and
useful — first for themselves, and in turn
for everyone. They transformed the bits and
bytes of silicon to beautiful user interfaces
and tools that every user or programmer of
the previous generation had only dreamt of.
But will they reach the utopia they have
been so determinately working towards?
Are they ever going to be full? Total power
doesn’t couple well with raw human greed
and the constant desire for more
satisfaction. Let’s see how our new
demigods coped.

The engineer evolved to be
pragmatic, make quick decisions and
focus only on the necessary. This
gave him a great ability to swiftly
adapt to new demands and overcome
challenges on the way.

Most people, including most software
engineers, would happily agree with this
description; perhaps it would even be
celebrated. But what if the phrasing is
slightly altered?

The engineer evolved to be impulsive,
reckless and tunnel-visioned. This
makes him prone to hasty solutions
and leaving heaps of duct tape behind
himself.

Suddenly, an entirely new shadow is cast.
We cannot dismiss the features highlighted
here as they are a direct, valid — but most
importantly — real and observable
implementation of the first description. The
fact that we managed to show this only by
specialising the original, innocent — or even
jubilant — portrayal reveals the danger
implied by such a seemingly normal
expectation for software engineers — even
the well-meaning ones.

This exercise certainly isn’t presented for
the author’s cynicism or as a dead end of
the argument. We can start pulling strings
and watch the history of software
engineering paint itself as it unravels our
three-question predicament.

Nature or nurture?
We can come up with several hypotheses as
to the impulsive nature of the engineer.
Fans of politics wouldn’t be afraid to go to
great depths explaining the effects of the
exploitative nature of the system most of
these engineers worked in. On the other
hand, those of us oriented more at
psychology and the true origin of human

Post–software engineering Challenges for the 21st century

action look for the answer deep in the
individuals’ heads.

The rapid onset of computing was definitely
not the first nor the last time man faced a
dopamine problem. In fact, we can observe
this in the adoption of any new exciting
technology by humans. Sometimes it is
expected, or even desired, and other times
it is unexpected — but in most of these
cases, depending on the novelty’s extent,
the result of such reckless and irresponsible
action can be disastrous.

We might also ask whether the culture of
software engineering would end up taking a
different path if we moved its epicentre from
the USA to Southern Europe, The Soviet
Union, Eastern Asia or The Middle East.
These places around the world are known
for their distinctive social schemes, habits,
work ethic, forms of leadership and ways
children are raised. But would any of those
be really able to steer away the innate
human motives?

Humans are driven by incentives; they act
upon them subconsciously in good faith,
but what for is good faith when they aren’t
hunting and gathering?

Strategy
It is hard to talk about any kind of strategy
when taking a closer look at the trends in
software engineering. By strategy, we mean
systematic, long-term thinking —
evaluation of criteria, problems and
solutions. In many cases, the lack thereof is
becoming a conscious choice.

Strategy takes time and intelligence;
strategy must be taught and trained;
mainly, strategy has to be called for and
valued — incentivised. Neither the customer
nor the manager of the age do so, however.
Rapid development is being cherished in
favour of thorough thinking; that is, apart
from a few areas.

Exploring the layers of societal action
leading here allows us to hypothesise the
flawed management of modern hierarchies,
the recent invention of consumerism and
customer-oriented free-market capitalism,
the overall rise in wealth that made people
needy and insatiable; all the way down to
the impulsive primal mindset. But today we
are not toppling the house of cards of
industrial societies — only the one of
software engineering; and it is frankly
difficult to imagine software engineering as
a whole becoming a thing weren’t it for
these “evil” standards.

A similar lack of strategic incentives can be
seen in other circuses of the world. In some
cities, people are getting tired of their roads
being repeatedly torn apart and paved
again every so often; watching seemingly
pointless construction take place, or having
governments debate ridiculous affairs only
for their non-existent or short-lived
outcomes. The growing sentiment of futile
and exhausting team meetings is especially
ironic, as such sessions are likely seen as the
vital triumph of the company’s strategy by
its higher executives. (2)

Anyone who has ever played chess was
imbued with the sudden realisation of the

Post–software engineering Challenges for the 21st century

importance of strategy in the real world —
every move needs careful planning, as every
move can have catastrophic consequences,
and it is only in the hands of the player for
which side. With the general lack of
strategy and the lack of self-reflection today,
we cannot expect something like Reliability
and stability to show as a defining aim.

Accessibility
As the growing army of unstrategic software
engineers started shaping the virtual world
to their ultimate liking, one of their primary
focuses was their own comfort. Via models
of abstraction, they started creating
indispensable tools, such as high-level
programming languages, libraries and
interfaces. This way, they lowered the
barrier of entry to the field significantly.
You suddenly didn’t need a degree to use a
computer, and a new generation of
engineers started eagerly jumping onboard.

This new generation no longer had degrees,
and started slurping on the fruits of
abstraction left by the the fathers. However,
as we will see, abstraction has one fatal
flaw, and these fell absolute victims to it.
With the henceforth lacking background,
more errors and oversights begun to pile up,
and worse — these innocent practices
obviously started to spread, including to the
latter generations, as this was just the
beginning.

It’s not like there were no software
engineers with degrees after this point, or
that some essential knowledge had been lost
— that would go against the only

accelerating rate of discovery and true
innovation that followed. The surging wave
was simply too strong; layers of abstractions
continued towering up and lower stories
were quietly being forgotten. The software
engineer of the new era adopted a modern
mental model and never looked back.

Moore’s curse
When Gordon Moore pointed out in 1965
that every year, double the amount of
transistors was able to fit in the same area
than previously, he knew what kind of
amazing advancement lied ahead of
computing. What he forgot was that
humans make disobedient gods; and that
giving them more resources could turn out
like giving the newts more guns.

Even faster than the astronomical growth of
transistor counts grew lines of code, job
positions, and levels of indirection.
Computers were suddenly an order of
magnitude faster than a few years ago —
and did almost twice as much! Sales went
up, developers had their legs on the desk,
and everyone was happy.

Not all, but a bigger portion of the current
ills of software can be categorically
attributed to Moore’s famous law, or, less
anecdotally — the whopping power, speed
and capacity increase that is accompanying
computational hardware to this day. This is
an undisputable fact, as the development of
modern software and the newly adopted
practises are largely built on the premise of
performant machinery — sometimes even
before such machinery is commercially

Post–software engineering Challenges for the 21st century

available2, and simply couldn’t take place
with more limited resources. We can
observe growing general sentiment (4)
against this status quo in particular; indeed,
many call for turning back the time for
computer hardware.

These causes — by which software tends to
expand to fill the available memory — and
the roles of both the fallacious brains of the
customer and the developer in the
conundrum, have been famously discussed
for decades (3).

Collapse of complex software
We have learnt how irresponsibly relying on
abstraction devised by giants upon whose
shoulders we stand — which Moore’s law
has allowed us to do relentlessly — gives
rise to complex software. Of course, today,
deep inside, every engineer knows this
(partly because we have been entering a
certain hiatus in performance growth); but
it is far too late. Software has become
unmaintainable and by no means suitable
for our vision of the future; it will inevitably
collapse and bury all fantasies of
contemporary software engineering once and
for all.

Complex societal organization notoriously
leads to collapse (5). Assuming this
perspective, we can arrive at surprising and
full-fledged conclusions (6) about what the
“software society” is going through, or where
it is headed. Juxtaposing with the former
Roman Empire allows us to draw

2 Such became a traditional form of advertising
“next-generation” videogames.

interesting parallels about its rise, the
golden age, and possible subsequent fall.
Notably, we certainly observe the Roman
imperium fall, but we watch it live on and
its spirit flourish in its successors —
whomst eventually surpass it. This can fill
us with the right amount of faith, courage
and care needed for taking the first steps as
a post-software society.

A brief software prehistory
1985 — Bjarne Stroustrup creates the C++
programming language, marking a definitive
turning point of indifference to complexity.

1990’s — Object Oriented Programming
becomes the dominant paradigm of trends
and development. It grabs focus of thorough
study, and gives birth to entire ecosystems,
cultures and principles such as SOLID. (7)

1995 — JavaScript, the archetypal pillar of
modern software, is born in 10 days (8).
This language would later prove a major
accelerationist force in the collapse.

2009 — Node.js and its npm package
manager emerge, the latter of which
normalises “dependency hell”, introducing
the era of the bloated web.

2013 — Release of Electron, a
HTML/CSS/JavaScript-based platform for
deploying desktop applications. Gaining
traction later into the decade, this
technology creeps on the thinnest ice so far,
provoking an uprising of doubt in both
userbases and developers. (9)

~2040 — Collapse of software as we know it

Post–software engineering Challenges for the 21st century

Part two: Post-software
What do the Sapients do about their
precarious situation? The philosophy of
software has been solved in the 20th
century. The key ideas were left here for
them to embrace — and it is only up to
them if they listen or not.

he era we are entering might as well
go by “Software Renaissance”, as it

clearly includes by and large returning to
the foundations, learning from questions
that have been answered in the past and
persistently ignored, practises that went out
of fashion and many ideas simply swept
under the rug. This recurring arrogant
assumption of our infallibility and total
superiority over the previous generations is
what has ultimately led us here, and an
attitude we will have to quit soon. (10)

T

Schools of thought come and go, though,
never in a linear fashion; in fact, many
teachings tend to coexist and intertwine at
the same time — influencing each other and
evolving in parallel. The same is true for us
— by no means will we have to do absolute
guesswork and fabricate our projections
from thin air, not only do we incorporate
ideas of the past, but ideas and software of
the future that has already started to
arrive. This part studies many of these
timeless and key programming paradigms,
concepts and doctrines.

A tour of the brain
Because we are still humans, starting at the
very heart of human cognition is essential
for designing better tools of software

engineering and getting a broader view of
its problems; as we’ve seen, almost every
societal dilemma can be traced to the basics
of what makes us human. So far,
development paradigms have been designed
“by engineers for engineers”, but that might
change; while these engineers exhibit a
remarkable ability to help themselves, they
are naturally susceptible to blunders —
ones that affect generations. Directly or
indirectly investing cognitive psychologists
and other scientists-outsiders deep inside
the engineer’s mind — or in the actions of
the industry as a whole — could prove
increasingly valuable. (11)

The human brain has evolved into a
magnificent form which allows us to reason
about non-trivial dynamic systems of ever-
growing size in a myriad of ways. It achieves
this by matching patterns — anything that
matches a simple enough pattern, be it
entirely imaginary, is going to be picked up
by the brain. Indeed, this concept is so
general that the brain can be viewed as
nothing but a looping pattern-recognition
machine. It is also incredibly effective at
learning new patterns and making
connections in them; perhaps even too
good, as this ability of vertical pattern

Post–software engineering Challenges for the 21st century

stacking makes possibly the last piece of the
secret called abstract reasoning.

Naturally, we strive to design a system that
is as much in line with the engineer’s
pattern set as possible. This is the reason
we use English names and familiar syntax in
computer programs and why we invent
paradigms that we can understand better;
the reason we talk about certain classes of
graphs as “trees” and arbitrary memory
locations as “objects” carrying “types”.3
None of those concepts actually translate to
the hardware we use to run the programs,
they are but servants to the biggest
humanist project in the world called
software engineering.

Extending the mind
When we design programming languages,
interfaces and abstractions, we are designing
extensions of our existing minds. This is
where many programmers leave their mind
self-reflection, but the ocean is much larger
— the imaginary world is only where it
starts. The engineer’s mind isn’t confined in
the tiny space of the cranium; rather, it
lives on the outside. It extends to physical
world, and includes all that is useful to him
— the pen and paper, the book, the
whiteboard, and ultimately the computer, is
what comprises the mind. (13)

It is important to advise that not taking the
opportunity and care of extending the
mind, or extending it in misguided ways,
doesn’t lead to a mere inconvenience or a

3 Malbolge (12) makes a curious example of a
programming language designed completely against
the usual human pattern set.

slight lag in our ability — it severely
cripples the psyche like a malnourished
infant. The bigger our mind is, the more
surface area surrounds it that allows its
natural growth. Each such extension has the
potential to conflict with the existing realm,
possibly becoming a burden, but we can
replace such parts trivially, and getting the
extension right endows us with superhuman
prospects. A good bit of attention in self-
improvement of every engineer should go
towards taking care of, growing and always
refining the healthy super-mind.

Adopting this understanding turns the mind
from a static and limited product nearing
obsolescence to a wonderful organism that
moves, evolves and adapts; but mainly —
one that can engineer itself, with nothing
standing in the way. In its fullest, we define
the global society as one functioning
organism, and each single individuals’ mind
as spanning the entire society. Everyone
possesses a skull with a divine embryo in it;
bring them together, and we can touch the
stars.

Communication
It is arguable whether humans are hindered
by their limited ability to write or speak on
their own, but this bottleneck becomes
further noticeable in communication with
other humans. In most cases nowadays, we
are nothing alone, and the rising rhetorical
competition urges everyone in the field to
develop better communication skills. This
includes engineers working in conjunction
and articulating problems to higher
management as well as general audiences.

Post–software engineering Challenges for the 21st century

We likely find ourselves in a time of the
widest disconnection between the user and
the developer. We can notice developers
undertake more and more seemingly
unsolicited tangents as is characteristically
observed in trends of user interface design,
where killing functionality and
responsiveness has become the norm in
favour of large text, buttons and similarly
questionable choices. Creating an unbiased
methodology for studying the real feedback
and effects on users is incredibly difficult in
this case, and thus we can only draw from
limited samples, but we can generally
speculate about a mixed user experience to
say the least.

Another piece of evidence for this gap is the
common disparity between software
intended for developers and for regular
users; e.g. we can see a general tendency of
developers to more systematic, reliable and
simple tools, such as sleek desktop
environments and terminal applications,
and then their bulky and complex
counterparts used in offices around the
corner. We shall add that such software,
which finds immense support in the
developer community, was once the kind of
software everyone used. Improvements in
direct and more accurate communication
between consumers and producers of
programs are a needed upcoming necessity.

Abstraction
In the theme of abstract reasoning,
abstraction is a term engineers use to
describe methods of simplification of various
systems — bringing them from their

physical, fuzzy, unpredictable and complex
implementations to elegant models that are
viewed as a whole and expose only their
necessary parts. This powerful concept
allows us to take a component of great
intricacy, reducing it to but a square on a
whiteboard.

By definition, abstraction simplifies ideas —
and with every deal of abstraction, some
information is lost. This is usually a
conscious choice and even a welcome one; a
bit of unessential knowledge about the
system is simply disregarded in the process.
While, from a theoretical standpoint, this
leads to underutilization of the system, the
advantages abstraction brings decisively
outweigh such concern.

Because every caste in the software
engineering pyramid can follow this same
process for anything they deem
unnecessarily complex for their purpose, a
certain danger starts lurking. We can see
that layering just enough of these piecemeal
sacrifices gets us into a real pickle — too
much information has been neglected, after
all. The most noticeable toll usually taken
here is in performance, but in fact, it has
the possibility of affecting everything; each
lazy engineer in the chain may be tempted
to cut corners, pushing the symmetrical
square further from reality, and sinking
everybody else. A great challenge for
developers of the tomorrow will be realising
whether all problems in software
engineering cannot be solved with one less
level of indirection, after all. (14)

Post–software engineering Challenges for the 21st century

Dependencies
What was once seen as a biggest generosity
and privilege, that is, using computer code
of an acquaintance, has very much become
commonplace under the baton of the realm
of internet. Of course, this is a phenomenal
achievement, and it is now ever more
powerful in the reign of open-source
software — suddenly, everyone from around
the world can share smaller or bigger pieces
of code that make their work invaluably
more convenient. To developers, having the
ability to simply grab a piece of code and
ship a product using it the next day makes
package managers feel like magical oracles.

In the recent times, we have seen the
community particularly embrace such
complete and sophisticated solutions to
sharing code — no longer is it a snippet you
snatched from a forum, or a script someone
with the same problem wrote for themselves
and decided to publish; dependencies are a
consumer commodity with heavy machinery
supporting it. Don’t even think of
marketing a programming language today
without its own package infrastructure and
a central repository where programmers can
publish their libraries. Such packages (each
project tends to use an original, quirky
name instead) range vastly in function and
purpose — we find everything from trivial
convenience procedures to highly
sophisticated solutions. There are cases
where even end-users are forced to use these
language-specific installers to acquire
consumer software.

But clearly, the developers of dependencies
want to use their favourite dependencies as
well. This is a key feature of these
technologies — dependencies are recursive.
They form uncontrolled magnificent trees
that end up spanning hundreds or
thousands of nodes and monstrous amounts
of disk space, with likely a significant
portion of them being abandoned, obsolete,
superfluous, vulnerable, or all at once. In
short, modern dependency chains make one
of the purest and most delicate
embodiments of cumulative abstraction
error.

One of the most common issues an engineer
of this age encounters are indeed the ones
concerning dependencies. There are many
ways to share code and many ways to
ensure the process go as smooth as possible,
such as careful curation and integration of
foreign code for particular purposes.
However, the immediate convenience of such
efforts falls behind and what prevails is the
deadliest combination of granular, recursive
packages that remain in reach like cartons
in a supermarket. This issue hasn’t gone
unnoticed; there exist admirable efforts at
providing better solutions targeting
stability, reliability and reproducibility. (15)

A dependency is something that used to
exist on a much smaller scale and with
special status, even a term that used to be
pejorative, but became completely
normalised; in other words reliance — an
idea that must instinctively itch just
hearing, being the arch enemy of all
engineering.

Post–software engineering Challenges for the 21st century

Having seen how abstraction can be done
irresponsibly and cause wildfires, we can
move on to the bits and pieces that will
actually survive the upcoming great filter.

Types
A recurring pattern in human reasoning
contemplates objects — little blobs of
information and their associated action that
ultimately compose into computation. For
our own sanity, we give these blobs defined
structures for later access, we make them
interact with each other, and we even put
them inside each other. Finally, our
programs tend to reuse many of these blob
structures and their morphisms — an idea
so natural to us that the development of
type theory outran the first electronic
computer. (16)

Types are a natural, but also an extremely
powerful and robust way to constrain
grammars, and the more constrained our
programs are, the less computation will be
required for their analysis — and the more
thorough analysis we can perform on it. In
mathematical terms, they are able to
effortlessly sieve all possible programs into
their minuscule subset of desirable variants
— type systems give programs meaning.

The usage of types has become so
ubiquitous in coding that their users rarely
view them as anything special. While they
are given certain superficial attention, the
common understanding doesn’t go deeper
than basic types, perhaps generic types,
methods and interfaces. The field is much
more extensive and riddled with hidden

romance and usefulness that mathematics
has been unwinding for a greater part of the
last century. (18) As impressively as
rudimentary type theory reduces the
possible error space, we can go much, much
further, and unlike most contemporary
programming languages, whose fossilised
type systems are kept frozen in time,
seemingly awaiting excavation for their
display in museums.

Functions
While types are the easiest way for humans
to conceptualise and categorise patterns of
data, an equally natural extension must be
that of modification and interaction of the
same data. When we isolate only the items
we are working with at the moment,
conceiving a universal box that takes some
information and returns a useful result, we
uncover functions — the very atoms of
computation. These again stem from
mathematics, and are found in some form in
all programming languages.

What makes functions powerful is that they
can be thought of individually, as Lego
blocks that can be arranged in ever-higher
levels of abstraction without spiralling out
of control. Having the ability to ponder
about just one piece of the puzzle at a time
and nothing else gives us the incredible
prowess of coming closer to understanding
the system in question as a whole. But this
is, from another perspective, a rule — a rule
that imposes constraints on the
programmer, but one that clearly brings
great benefits if sincerely fulfilled.

Post–software engineering Challenges for the 21st century

The modern imperative paradigm of
programming emerged very early on, and
managed to maintain its dominance
effortlessly into the present. In this way,
engineers could seemingly get the best of
many worlds — declaring and mutating
variables wherever they felt, writing down
arbitrary commands in sequences, and
under some circumstances, putting some of
them into separate functions. But the
cardinal sin henceforth committed against
functions went by overlooked. They became
no more the crux of all play, stepping down
from the central role of any computer
program to merely serve as another tool
among many. It is way too easy to dismiss
unappreciated constraints as limiting,
blindly cherishing freedom instead, and
thusly all the advantages and guarantees of
reasoning with then-functions soon
evaporated.

Immutability
Mutation is what we term the altering of
information held in memory. This altering
takes place for clear reasons, such as
memory being limited, but also the common
possible benefits of changing topologies of
data in favour of faster processing on
modern hardware. Perhaps not so
coincidentally, mutation also happens to
come very intuitive to humans — as the
world they live in is subject to constant
change, and if something, it is the lack
thereof that is questioned. Due to reasons
discussed, this notion naturally ended up
projected into programming language and
software design.

While mutation can therefore be beneficial
to both humans and computing hardware in
terms of efficiency, there is a big catch. The
circumstances in which it be favourable to
each differ extensively. In countless cases, a
mutating program makes the most sense to
a human, but proves very inefficient, and
conversely, efficient programs are often
unintelligible to humans. The impossibility
of mutation, however, is a different story.
Provided strong enough type and function-
based grammars, systematically
constraining mutability can lead existing
program analysis to more decisive and
complete conclusions as well as allowing
optimisation that might at last reintroduce
mutation, but now in a provably even more
efficient manner. The engineer’s willingness
to take time and adjust his primal pattern
set but slightly to see farther in the end
finally makes the last piece of the puzzle for
post-software to win on all fronts.

All such systematic constraints reduce
entropy to give order, order begets meaning,
and meaning enables knowledge. To
humans, knowledge furnishes reason and
carefully refines and enlightens the mind,
deepening its understanding and impeding
it from wandering far off the path, and thus
thwarting the genesis of complexity. To
machines, knowledge equally provides
necessary working data, improving
automatic analysis, optimisation, error
detection, and soon enough as well —
reason.

Post–software engineering Challenges for the 21st century

Proof and error
Every engineer has had their compiler
coldly spit an error message on behalf of
one of these three constraint systems in
their face; and we know that engineers
rarely take such insults lightly. However, we
necessarily emphasize the infinite usefulness
of compiler errors, as they embody
everything their type, function and
immutability systems stand for, and should
be most appreciated. In fact, such a pre-
emptive error is just another way the
compiler tells us that it had hereby proven
the program’s incorrectness, or even
vulnerability against adversaries.

Indeed, we can observe languages with
especially lax typing rules suffer from the
exact correctness and some security errors
that even simple type systems disqualify
with ease. But basic type checking is just
the beginning. A proof is an unquestionable
argument towards the truthfulness of a
proposition — define the proposition as
“this program is correct”, and conquer. Of
course, it will still take us a while to reach
that point, but that is not to say that
proving software is futile — many modern
analysis techniques from computer science
and type theory are entering wide use. (17)

A proof method that involves direct
formulaic proofs known as formal
verification has gained traction in the last
decades, as it has been successfully used for
proving the full correctness of microkernels
(20) and compilers. (22) However, despite
the technique’s merits, it can suffer errors
from incorrect specification, and is

incredibly time-consuming. Hybrid
approaches for direct inclusion of formal
verification in programming languages are
being brought up (19), but rapidly changing
requirements and incentive issues make
general adoption of formal verification
techniques improbable.

Therefore, we expect more elaborate static
verification systems to be embedded directly
into languages, possibly carrying over more
formal primitives, but posing minimal
annoyance to the programmer and
empowering them — turning ever more
runtime errors to compile time errors. Many
of these systems already exist, but dispersed
on papers or in isolation (21), where their
full potential in conjunction cannot be
witnessed. As humans start acknowledging
more of their limitations, machine analysis
of computer code will become one of the
defining features of post-software.

Rehomogenisation
Trying to automate arbitrary computer
actions, despite sounding tautological, can
prove difficult or even impossible with
today’s software architecture. User-facing
programs are mostly designed with just one
interface in mind — manual input from the
user and graphical output. The more
advanced ones offer their own automation
features, except that at the end, those are
also confined to a human interface.

In the beginnings, there was nothing
available but a keyboard and a text
terminal; thus, the only way a user could
work with the computer was textual input

Post–software engineering Challenges for the 21st century

and output. The bandwidth was scarce and
computers slow, so the interface had to be
necessarily simple and possessing only what
was necessary. External storage was equally
limited, so neither the worked data nor the
actual programs could take up vast amounts
of space. This lead to the realisation that
doing more with the computer would have
to involve piecemeal interoperation of
multiple powerful programs — ones whose
compatibility was paramount. Because of
these severe constraints and the desire to
maximise functionality, substantially more
actual code of the system was exposed to
the user, who could then build up this code
for almost any use case necessary.

All these barricades were eventually
eradicated by the rapid progress of
computing hardware, and we witnessed the
rise of software in its current form. Space
and speed no longer being an issue,
humongous pieces of software, like web
browsers, naturally arose — and because
they could function completely on their
own, their usable surface area ratio shrunk
drastically. Their internals are comprised by
otherwise unintelligible interfaces that will
never see the light of day, so not only is the
user incapacitated in the usage of the
program, but even more so are other
programs.

If we expect to do more with computers,
and computers to do more for us, we must
promote reuse and wide applicability of
software. The only way in which computer
subsystems can cooperate is if they are able
to talk to each other. Many of the
aforementioned language-specific package

repositories come close to this reality,
building layers above existing software that
permit its automation. The isolation to a
single language doesn’t pose an issue if we
are confident enough in building this
ecosystem into a monopoly, but these
building blocks still suffer from big
variability in interfaces and their function,
and the inherent necessity for programming
these complex layers, which might not even
be realisable in the first place. We can
automate some, but can we automate the
automation?

Programming interfaces for web services
already enjoy a great deal of homogeny in
their architecture. They can be used to
reliably query weather forecast, mail, and
real-time data. They demonstrate on a
network scale what kind of language all
post-software could use to talk among itself
once — and perhaps finally enable Alexa to
write you a short script to sync your class
materials.

Post–software engineering Challenges for the 21st century

Conclusions

Different realities make it hard to label software engineering as living through either its
infancy, puberty or elderly years. Regardless, the industry is still very much turbulent and
will require care to relocate to calm waters — despite the promises made about the future
we take for granted, the hypnotising wonder of computation has been driving us further
and further from our destination, rather than towards it. There is no one or everyone to
blame for this course of events, but it can be viewed as a necessary step in development,
bringing countless lessons — prerequisites for a reboot and a new flourishing age.

The future lies by and large in acknowledging our insufficiencies, rethinking our long-term
incentives, and gravitating towards simpler and more tractable solutions. The essential
problems we face today are not too greater in complexity than countless problems we’ve
already solved in the past with slower computers, or no computers at all. Yet we have
voluntarily handed our lives over to machines that no single person understands anymore,
machines we are unable to learn about in their entirety or repair ourselves, machines
riddled with fatal human error — ones that have kept society afloat so far, but whose use
is unthinkable in their current state for the brave new world.

Humans find themselves at a supremely important point in history from many aspects. The
future is very promising, and I believe that we are, as a society, capable of overcoming all
the roadblocks — but only if we can connect, cooperate, communicate and build upon each
other’s contribution; if we don’t stay ignorant, short-sighted and selfish in our actions; and
if we stop looking at the world in its present, but also in 50, 100 and 1000 years, as that is
not only the world our children will live in, but where the ultimate fate of humanity
strives. Living in the most important century yet, you and I are the most important people
to live thus far — we are the giants.

Improve this draft by sending feedback via e-mail.

mailto:jamertwo@gmail.com

Post–software engineering Challenges for the 21st century

References
Compelled readers are strongly encouraged to follow some of these sources in particular as
they lead to deep rabbit holes of wonderful knowledge and perspectives that the we often
touch on only insultingly briefly. In fact, this essay was written only to shine light onto
these existing, much more developed works and ideas, as well as to challenge contemporary
tendencies, incite reflection and response.

(1) Derbinsky, L. [Lex Fridman]. (2018, March 20). MIT AGI: Cognitive Architecture
[Video]. YouTube. https://www.youtube.com/watch?v=bfO4EkoGh40

Part One: How did we get here?
(2) Cutler, J. (2022, July 14). TBM 30/52: Why Don’t We Have a Strategy? The

Beautiful Mess. https://cutlefish.substack.com/p/tbm-3052-why-do-we-have-no-
strategy

(3) Niklaus Wirth. 1995. A Plea for Lean Software. Computer 28, 2 (February 1995),
64–68. https://doi.org/10.1109/2.348001

(4) Handmade Manifesto. (2016). Handmade Network.
https://handmade.network/manifesto

(5) Tainter, J. (1988). The Collapse of Complex Societies. Cambridge University Press.

(6) Lawson, N. (2022, June 9). The collapse of complex software. Read the Tea Leaves.
https://nolanlawson.com/2022/06/09/the-collapse-of-complex-software/

(7) Martin, R. C. (2000). Design Principles and Design Patterns.
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/
resources/articles/Principles_and_Patterns.pdf

(8) Eich, T. [Tech Talk]. (2018, August 6). A Brief History of JavaScript [Video].
YouTube. https://www.youtube.com/watch?v=GxouWy-ZE80

(9) Beyer, C. (2017, November 8). Electron is Cancer. Medium - Commit Log.
https://medium.com/commitlog/electron-is-cancer-b066108e6c32

Part two: Post-software
(10) Blow, J. [DevGAMM]. (2019, July 10). Preventing the Collapse of Civilization

[Video]. YouTube. https://www.youtube.com/watch?v=ZSRHeXYDLko

(11) Norman, D. A. (1986). Cognitive engineering. User centered system design, 31, 61.
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Co
gnitive_Engineering

(12) Olmstead, B. (1998). Malbolge. http://www.lscheffer.com/malbolge_spec.html

https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Cognitive_Engineering
https://www.researchgate.net/profile/Donald-Norman-3/publication/235616560_Cognitive_Engineering
http://www.lscheffer.com/malbolge_spec.html
https://www.youtube.com/watch?v=ZSRHeXYDLko
https://medium.com/commitlog/electron-is-cancer-b066108e6c32
https://www.youtube.com/watch?v=GxouWy-ZE80
https://nolanlawson.com/2022/06/09/the-collapse-of-complex-software/
https://handmade.network/manifesto
https://doi.org/10.1109/2.348001
https://cutlefish.substack.com/p/tbm-3052-why-do-we-have-no-strategy
https://cutlefish.substack.com/p/tbm-3052-why-do-we-have-no-strategy
https://www.youtube.com/watch?v=bfO4EkoGh40

Post–software engineering Challenges for the 21st century

(13) Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis, 58(1), 7–19.
https://web-archive.southampton.ac.uk/cogprints.org/320/1/extended.html

(14) Oram, A., & Wilson, G. (2007). Another Level of Indirection. In Beautiful Code:
Leading Programmers Explain How They Think (1st ed., pp. 279–291). O’Reilly
Media.

(15) Dolstra, E., de Jonge, M. and Visser, E. "Nix: A Safe and Policy-Free System for
Software Deployment." In Damon, L. (Ed.), 18th Large Installation System
Administration Conference (LISA '04), pages 79–92, Atlanta, Georgia, USA.
USENIX, November 2004. https://nixos.org/~eelco/pubs/nspfssd-lisa2004-final.pdf

(16) Church, A. (1940). A formulation of the simple theory of types. Journal of
Symbolic Logic, 5, 56 – 68.

(17) Klabnik, S., & Nichols, C. (2018). The Rust Programming Language (1st Edition).
No Starch Press.

(18) Cardelli, L., & Wegner, P. (1985). On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4), 471–523.
https://doi.org/10.1145/6041.6042

(19) Hansen, B. (2022). Magmide; Provably correct software is possible and necessary.
GitHub. https://github.com/magmide/magmide/blob/main/README.md

(20) Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., &
Winwood, S. (2010). seL4. Communications of the ACM, 53(6), 107–115.
https://doi.org/10.1145/1743546.1743574

(21) NASA. (2014). IKOS: Static analyzer for C/C++ based on the theory of Abstract
Interpretation. GitHub. https://github.com/NASA-SW-VnV/ikos

(22) Leroy, X. (2009). Formal verification of a realistic compiler. Communications of
the ACM, 52(7), 107–115. https://doi.org/10.1145/1538788.1538814

https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/1538788.1538814
https://github.com/NASA-SW-VnV/ikos
https://doi.org/10.1145/1743546.1743574
https://github.com/magmide/magmide/blob/main/README.md
https://nixos.org/~eelco/pubs/nspfssd-lisa2004-final.pdf
https://web-archive.southampton.ac.uk/cogprints.org/320/1/extended.html

	Post-software engineering Challenges for the 21st century
	Prologue
	1. Reliability and stability
	2. Security
	3. Automation

	Part One: How did we get here?
	The software engineer
	Demigods
	Nature or nurture?
	Strategy
	Accessibility
	Moore’s curse
	Collapse of complex software
	A brief software prehistory

	Part two: Post-software
	A tour of the brain
	Extending the mind
	Communication
	Abstraction
	Dependencies
	Types
	Functions
	Immutability
	Proof and error
	Rehomogenisation

	Conclusions
	Different realities make it hard to label software engineering as living through either its infancy, puberty or elderly years. Regardless, the industry is still very much turbulent and will require care to relocate to calm waters — despite the promises made about the future we take for granted, the hypnotising wonder of computation has been driving us further and further from our destination, rather than towards it. There is no one or everyone to blame for this course of events, but it can be viewed as a necessary step in development, bringing countless lessons — prerequisites for a reboot and a new flourishing age.
	The future lies by and large in acknowledging our insufficiencies, rethinking our long-term incentives, and gravitating towards simpler and more tractable solutions. The essential problems we face today are not too greater in complexity than countless problems we’ve already solved in the past with slower computers, or no computers at all. Yet we have voluntarily handed our lives over to machines that no single person understands anymore, machines we are unable to learn about in their entirety or repair ourselves, machines riddled with fatal human error — ones that have kept society afloat so far, but whose use is unthinkable in their current state for the brave new world.
	Humans find themselves at a supremely important point in history from many aspects. The future is very promising, and I believe that we are, as a society, capable of overcoming all the roadblocks — but only if we can connect, cooperate, communicate and build upon each other’s contribution; if we don’t stay ignorant, short-sighted and selfish in our actions; and if we stop looking at the world in its present, but also in 50, 100 and 1000 years, as that is not only the world our children will live in, but where the ultimate fate of humanity strives. Living in the most important century yet, you and I are the most important people to live thus far — we are the giants.
	Improve this draft by sending feedback via e-mail.
	References
	Part One: How did we get here?
	Part two: Post-software

